[1]中国新闻社.[中国新闻社]应急管理部:5年来165人在救援任务中牺牲[EB/OL].(2023-11-07)[2025-02-28].https://www.mem.gov.cn/xw/xwfbh/2023n11y7rxwfbh/mtbd_4262/202311/t20231107_467922.shtml.
[2]ABD-ELFATTAH H M,ABDELAZEIM F H,ELSHENNAWY S.Physical and cognitive consequences of fatigue:a review [J].Journal of Advanced Research,2015,6(3):351-358.
[3]YUNG M,DU B,GRUBER J,et al.Developing a Canadian fatigue risk management standard for first responders:defining the scope [J].Safety Science,2021,134:105044.
[4]SIKANDER G,ANWAR S.Driver fatigue detection systems:a review [J].IEEE Transactions on Intelligent Transportation Systems,2018,20(6):2339-2352.
[5]沈剑,李红霞.矿工作业疲劳对煤矿险兆事件的影响机理——基于情感耗竭中介变量的分析 [J].安全与环境学报,2019,19(2):527-534.
SHEN Jian,LI Hongxia.Analysis of the impact of the fatigue index on the coal miners’near-miss—the mediation of the emotional exhaust [J].Journal of Safety and Environment,2019,19(2):527-534.
[6]HU X,LODEWIJKS G.Exploration of the effects of task-related fatigue on eye-motion features and its value in improving driver fatigue-related technology [J].Transportation Research Part F:Traffic Psychology and Behaviour,2021,80:150-171.
[7]RODRIGUES S B,DE FARIA L P,MONTEIRO A M,et al.EMG signal processing for the study of localized muscle fatigue—pilot study to explore the applicability of a novel method [J].International Journal of Environmental Research and Public Health,2022,19(20):13270.
[8]HAO T,ZHENG X,WANG H,et al.Linear and nonlinear analyses of heart rate variability signals under mental load [J].Biomedical Signal Processing and Control,2022,77:103758.
[9]李志学.基于多模生理信号的精神疲劳检测系统的设计与研究 [D].兰州:兰州大学,2018.
[10]牛琳博.基于心电信号的驾驶疲劳识别方法研究 [D].成都:西南交通大学,2017.
[11]周建亮,陈玮,范丽萍.基于生理指标的建筑工人攀登作业疲劳实验研究 [J].中国安全生产科学技术,2023,19(3):195-202.
ZHOU Jianliang,CHEN Wei,FAN Liping.Experimental study on climbing operation fatigue of construction workers based on physiological indexes [J].Journal of Safety Science and Technology,2023,19(3):195-202.
[12]ADO MARTINS N R,ANNAHEIM S,SPENGLER C M,et al.Fatigue monitoring through wearables:a state-of-the-art review [J].Frontiers in Physiology,2021,12:790292.
[13]GUYON I,ELISSEEFF A.An introduction to variable and feature selection [J].Journal of Machine Learning Research,2003,3(Mar):1157-1182.
[14]DE JAY N,PAPILLON-CAVANAGH S,OLSEN C,et al.mRMRe:an R package for parallelized mRMR ensemble feature selection [J].Bioinformatics,2013,29(18):2365-2368.
[15]ROBNIK-IKONJA M,KONONENKO I.Theoretical and empirical analysis of ReliefF and RReliefF [J].Machine Learning,2003,53:23-69.
[16]LIANG T,ZHANG Q,HONG L,et al.Directed information flow analysis reveals muscle fatigue-related changes in muscle networks and corticomuscular coupling [J].Frontiers in Neuroscience,2021,15:750936.
[17]ANWER S,LI H,UMER W,et al.Identification and classification of physical fatigue in construction workers using linear and nonlinear heart rate variability measurements [J].Journal of Construction Engineering and Management,2023,149(7):04023057.
[18]BUSTOS D,CARDOSO F,RIOS M,et al.Machine learning approach to model physical fatigue during incremental exercise among firefighters [J].Sensors,2023,23(1):194.
[1]陈鹏冲,刘畅,葛黄徐,等.城市大面积停电应急能力评估指标探讨*[J].中国安全生产科学技术,2023,19(6):5.[doi:10.11731/j.issn.1673-193x.2023.06.001]
CHEN Pengchong,LIU Chang,GE Huangxu,et al.Research on evaluation indexes of emergency capability for urban large-scale blackout[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(3):5.[doi:10.11731/j.issn.1673-193x.2023.06.001]
[2]缪季,段立平,刘吉明,等.基于贝叶斯优化XGBoost的建筑施工事故类型预测*[J].中国安全生产科学技术,2024,20(5):57.[doi:10.11731/j.issn.1673-193x.2024.05.008]
MIAO Ji,DUAN Liping,LIU Jiming,et al.Prediction on accident types of building construction based on Bayesian optimized XGBoost[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(3):57.[doi:10.11731/j.issn.1673-193x.2024.05.008]