[1]梁燕华,芦君珂,田训鹏.基于改进分布估计的算法在井下监控系统中的应用研究[J].中国矿业,2023,32(12):92-99.
LIANG Yanhua,LU Junke,TIAN Xunpeng.Research on the application of an improved distribution estimation algorithm in underground monitoring systems [J].China Mining Magazine,2023,32(12):92-99.
[2]罗庆中,陈志军.基于ZigBee的矿井安全监测系统设计[J].内蒙古煤炭经济,2024(10):108-110.
LUO Qingzhong,CHEN Zhijun.Design ofmine safety monitoring system based on ZigBee [J].Inner Mongolia Coal Economy,2024(10):108-110.
[3]范颖晨,褚治广,李启龙.基于视频流分析的重点区域异常行为监测平台[J].辽宁工业大学学报(自然科学版),2024,44(2):109-114.
FAN Yingchen,CHU Zhiguang,LI Qilong.Abnormal behavior monitoring platform in key regions based on video stream analysis [J].Journal of Liaoning University of Technology (Natural Science Edition),2024,44 (2):109-114.
[4]孙晓.基于深度学习的异常行为检测与识别方法研究[D].北京:北京交通大学,2023.
[5]梁睿琳,王锐,郭迎.基于视频时空关系的高速公路异常停车检测[J].计算机应用研究,2022,39(6):1916-1920.
LIANG Ruilin,WANG Rui,GUO Ying.Freeway abnormal parking detection based on video spatiotemporal relationship [J].Journal of Applied Research of Computers,2022,39(6):1916-1920.
[6]陈翰林.基于YOLOv4-tiny的煤矿职工井下违章行为识别的研究[D].淮南:安徽理工大学,2021.
[7]苏晨,郝乐,杨若楠.基于视频流的井下人数统计方法研究与应用[J].煤炭技术,2019,38(12):164-167.
SU Chen,HAO Le,YANG Ruonan.Research and application of downhole man count method based on video stream [J].Coal Technology,2019,38(12):164-167.
[8]赵仁凤.视频监控中人体异常行为识别[J].宿州学院学报,2018,33(11):111-115.
ZHAO Renfeng.Human abnormal behavior recognition in video surveillance [J].Journal of Suzhou University,2018,33(11):111-115.
[9]原磊明,王海斌,刘旭飞,等.矿井人身安全视频防护系统设计[J].煤炭技术,2018,37(11):373-375.
YUAN Leiming,WANG Haibin,LIU Xufei,et al.Design of video protection system for mine personal safety [J].Coal Technology,2018,37(11):373-375.
[10]ASAD M,JIANG H,YANG J,et al.Multi-stream 3D latent feature clustering for abnormality detection in videos [J].Applied Intelligence,2021,52(1):1-18.
[11]OZAGA A,MURAT E.A data stream-based approach for anomaly detection in surveillance videos [J].Multimedia Tools and Applications,2024,83(21):60213-60241.
[12]ZHAO Y X,MANK L.A novel two-stream structure for video anomaly detection in smart city management [J].The Journal of Supercomputing,2022,78:3940-3954.
[13]LI S,WANG Z G,ZHANG Y J,et al.A feature-trajectory-smoothed high-speed model for video anomaly detection [J].Sensors,2023,23(3):1612-1612.
[14]ZHENG T X,JIANG M Z,LI Y F,et al.Research on tomato detection in natural environment based on RC-YOLOv4 [J].Computers and Electronics in Agriculture,2022,198:107029.
[15]LI Q,ZHAO F,XU Z P,et al.Improved YOLOv4 algorithm for safety management of on-site power system work [J].Energy Reports,2022,8(13):739-746.
[16]JIANG S,YIN S R,LUO T H,et al. Multi-target vehicle detection algorithm based on improved YOLOv4[J].Computer Engineering and Design,2024,45(4):1181-1188.
[17]赵瑞.视频传输算法在浮选泡沫图像分析系统中的应用[J].中国矿业,2022,31(增刊1):315-320.
ZHAO Rui.Research onthe application of video transmission algorithms in the flotation foam image analysis system [J].China Mining Magazine,2022,31(Supplement 1):315-320.
[18]白莹.基于视频智能识别的带式运输机安全检测系统[J].现代矿业,2023,39(6):59-62.
BAI Ying.Safety detection system of beltconveyer based on video intelligent recognition [J].Modern Mining,2023,39(6):59-62.
[19]李飞,胡坤,张勇,等.基于混合域注意力YOLOv4的输送带纵向撕裂多维度检测[J].浙江大学学报(工学版),2022,56(11):2156-2167.
LI Fei,HU Kun,ZHANG Yong,et al.Multi-dimensional detection of longitudinal tearing of conveyor belt based on mixed domain attention YOLOv4 [J].Journal of Zhejiang University (Engineering and Technology),2022,56 (11):2156-2167.
[20]郭永存,杨豚,王爽.基于改进YOLOv4-Tiny的矿井电机车多目标实时检测[J].工程科学与技术,2023,55(5):232-241.
GUO Yongcun,YANG Tun,WANG Shuang.Multi-object real-time detection of mine electric locomotive based onimproved YOLOv4-Tiny [J].Advanced Engineering Sciences,2023,55(5): 232-241.
[21]阮顺领,董莉娟,卢才武,等.基于RCR_YOLOv4的矿井巷道红外障碍检测研究[J].黄金科学技术,2022,30(4):603-611.
RUAN Shunling,DONG Lijuan,LU Caiwu,et al.Research on infrared obstacle detection of mine roadway based on RCR_YOLOv4 [J].Gold Science and Technology,2022,30(4):603-611.
[22]边铁山.基于SE-YOLOv5模型皮带异物检测算法研究 [J].中国矿业,2024,33(7):127-134.
BIAN Tieshan.Study onforeign object detection algorithm for conveyor belts based on the SE-YOLOv5 Model [J].China Mining Magazine,2024,33(7):127-134.
[23]李晶,洪武,张文亮,等.基于YOLOv5算法的智能剥锌机预开口识别技术研究[J].中国矿业,2024,33(增刊1):258-262,267.
LI Jing,HONG Wu,ZHANG Wenliang,et al.Investigation intopre-cut identification technology for intelligent zinc stripping machines using the YOLOv5 algorithm [J].China Mining Magazine,2024,33(Supplement 1):258-262,267.
[24]杨建伟,涂兴子,梅峰漳,等.基于深度学习优化YOLOV3算法的芳纶带检测算法研究[J].中国矿业,2020,29(4):67-72.
YANG Jianwei,TU Xingzi,MEI Fengzhang,et al.Research on the optimization of YOLOV3 algorithm for aramid belt detection using deep learning techniques [J].China Mining Magazine,2020,29(4):67-72.
[1]康荣学.基于GIS的重大危险源安全监测预警系统研究与开发[J].中国安全生产科学技术,2010,6(3):110.
KANG Rong-xue.Research and development of safety minitoring and early-warning system based on GIS for the major hazards[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2010,6(3):110.
[2]章耿勇.超高压电网应急指挥信息平台的设计与应用[J].中国安全生产科学技术,2013,9(3):129.[doi:10.11731/j.issn.1673-193x.2013.03.23]
ZHANG Geng yong.Design and application of emergency command information platform for EHV power grid[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2013,9(3):129.[doi:10.11731/j.issn.1673-193x.2013.03.23]
[3]康荣学,吴宗之.烟花爆竹企业安全监控预警系统研究*[J].中国安全生产科学技术,2009,5(6):21.
KANG Rong xue,WU Zong zhi.Research of safety monitoring system for fireworks and crackers enterprise[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(3):21.
[4]郭志宇,郭安宁,白雪见,等.基于视频监控系统的突发灾害应急评估技术可行性研究[J].中国安全生产科学技术,2017,13(5):122.[doi:10.11731/j.issn.1673-193x.2017.05.020]
GUO Zhiyu,GUO Anning,BAI Xuejian,et al.Feasibility study on emergency assessment technology of sudden disaster based on video surveillance system[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2017,13(3):122.[doi:10.11731/j.issn.1673-193x.2017.05.020]
[5]唐豪,奉鑫鑫,高曙,等.基于视频分析的空管员违规行为识别方法*[J].中国安全生产科学技术,2023,19(1):196.[doi:10.11731/j.issn.1673-193x.2023.01.029]
TANG Hao,FENG Xinxin,GAO Shu,et al.Violations recognition method of air traffic controllers based on video analysis[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(3):196.[doi:10.11731/j.issn.1673-193x.2023.01.029]