|本期目录/Table of Contents|

[1]刘洪杰,马衍坤,王小岐,等.煤体强度差异对裂缝跨界面扩展影响规律研究*[J].中国安全生产科学技术,2025,21(3):119-125.[doi:10.11731/j.issn.1673-193x.2025.03.015]
 LIU Hongjie,MA Yankun,WANG Xiaoqi,et al.Study on influence of coal strength difference on crack propagation across interface[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2025,21(3):119-125.[doi:10.11731/j.issn.1673-193x.2025.03.015]
点击复制

煤体强度差异对裂缝跨界面扩展影响规律研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
21
期数:
2025年3期
页码:
119-125
栏目:
职业安全卫生管理与技术
出版日期:
2025-03-31

文章信息/Info

Title:
Study on influence of coal strength difference on crack propagation across interface
文章编号:
1673-193X(2025)-03-0119-07
作者:
刘洪杰马衍坤王小岐周健
(1.安徽理工大学 煤矿安全高效开采省部共建教育部重点实验室,安徽 淮南 232001;
2.安徽理工大学 矿山安全高效开采安徽省高校工程技术研究中心,安徽 淮南 232001;
3.安徽理工大学 煤矿深井开采灾害防治技术科技研发平台,安徽 淮南 232001;
4.京昆高速铁路西昆有限公司,重庆 400020;
5.中铁隧道局集团有限公司,广东 广州 511400)
Author(s):
LIU Hongjie MA Yankun WANG Xiaoqi ZHOU Jian
关键词:
顶板水力压裂岩煤界面岩煤强度差异声发射分析数字图像相关方法
Keywords:
roof hydraulic fracturing rock-coal interface rock-coal strength difference acoustic emission analysis digital image correlation method
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2025.03.015
文献标志码:
A
摘要:
为探究岩煤界面两侧力学性能差异对裂缝跨界面扩展行为的影响,利用自主研制的单面可视煤岩真三轴水力压裂试验系统,对含不同强度煤体的组合体试块开展真三轴水力压裂试验。采用AE与DIC分析方法研究裂缝跨界面扩展过程的声发射和应变场响应规律。研究结果表明:裂缝在低强度煤层扩展过程中缝网展布形态复杂,水压曲线呈现出高频次的锯齿状波动,声发射信号反应较为剧烈;在高强度煤层扩展过程中缝网展布形态相对单一,水压曲线呈现出较低程度的波动,声发射信号反应较为平静。裂缝在扩展过程中两侧会出现明显拉伸与压缩应变局部化区域,应变局部化区域形态与裂缝扩展路径基本一致。随着裂缝跨越岩煤界面进入煤层,裂缝两侧呈现出明显的拉伸与压缩应变局部化带,不同强度煤岩体试块相较起裂时增大了4.29~11.09倍。裂缝两侧应变集中程度也迅速增大,拉应变值和压应变值分别增大了2.07~2.46倍和1.15~5.02倍。研究结果对顶板导向水力压裂技术研究具有重要参考意义。
Abstract:
In order to explore the influence of mechanical property difference on both sides of rock-coal interface on the cross-interface propagation behavior of cracks,the true triaxial hydraulic fracturing test was carried out on the composite test block containing coal bodies with different strengths using a self-developed single-sided visible coal-rock true triaxial hydraulic fracturing test system.The acoustic emission and strain field response law of the cross-interface propagation process of cracks were studied by AE and DIC analysis methods.The results show that the distribution pattern of crack network is complex during the process of crack propagation in low-strength coal seams,the water pressure curve presents the high-frequency sawtooth fluctuations,and the acoustic emission signal response is more intense.During the process of crack propagation in high-strength coal seams,the distribution pattern of crack network is relatively simple,the water pressure curve presents a lower degree of fluctuation,and the acoustic emission signal response is relatively calm.There are obvious tensile and compressive strain localization areas on both sides of crack during the propagation process,and the pattern of strain localization area is basically consistent with the crack propagation path.As the crack crosses the rock-coal interface and extends into the coal seam,the obvious localized zones of tensile and compressive strain are observed on both sides of crack,and the test blocks of coal and rock mass with different strength increase by 4.29~11.09 times compared with the crack initiation.The degree of strain concentration on both sides of crack is also noted to rise rapidly,with the tensile and compressive strain values increasing by 2.07~2.46 times and 1.15~5.02 times,respectively.The research results have important reference significance for the research of roof-guided hydraulic fracturing technology.

参考文献/References:

[1]袁亮,王恩元,马衍坤,等.我国煤岩动力灾害研究进展及面临的科技难题[J].煤炭学报,2023,48(5):1825-1845. YUAN Liang,WANG Enyuan,MA Yankun,et al.Research progress of coal and rock dynamic disasters in my country and the scientific and technological challenges faced[J].Journal of China Coal Society,2023,48(5):1825-1845.
[2]杨典森,周云,周再乐.含界面储层水力压裂试验与数值模拟研究进展[J].岩石力学与工程学报,2022,41(9):1771-1794. YANG Diansen,ZHOU Yun,ZHOU Zaile.Research progress on hydraulic fracturing experiments and numerical simulations of reservoirs with interfaces[J].Chinese Journal of Rock Mechanics and Engineering,2022,41(9):1771-1794.
[3]李倩,李童,蔡益栋,等.煤层气储层水力裂缝扩展特征与控因研究进展[J].煤炭学报,2023,48(12):4443-4460. LI Qian,LI Tong,CAI Yidong,et al.Research progress on the propagation characteristics and control factors of hydraulic fractures in coalbed methane reservoirs[J].Journal of China Coal Society,2023,48(12):4443-4460.
[4]胡千庭,刘继川,李全贵,等.煤层顶板分段水力压裂应力及裂缝演化试验研究[J].中国矿业大学学报,2023,52(6):1084-1095,1202. HU Qianting,LIU Jichuan,LI Quangui,et al.Experimental study on stress and crack evolution of coal seam roof by segmented hydraulic fracturing[J].Journal of China University of Mining and Technology,2023,52(6):1084-1095,1202.
[5]杨帆,梅文博,李亮,等.薄互层致密砂岩水力压裂裂缝扩展特征研究[J].煤田地质与勘探,2023,51(7):61-71. YANG Fan,MEI Wenbo,LI Liang,et al.Study on the crack propagation characteristics of hydraulic fracturing in thin interbedded tight sandstone[J].Coal Geology and Exploration,2023,51(7):61-71.
[6]庞涛,姜在炳,惠江涛,等.煤系水平井定向射孔压裂裂缝扩展机制[J].煤田地质与勘探,2024,52(4):68-75. PANG Tao,JIANG Zaibing,HUI Jiangtao,et al.Fracture propagation mechanism of directional perforation fract-uring in coal-bearing horizontal wells[J].Coal Geology and Exploration,2024,52(4):68-75.
[7]黄旭超.多煤层压裂裂纹竞争起裂扩展特征分析[J].采矿与安全工程学报,2022,39(1):184-191. HUANG Xuchao.Analysis of competitive crack initiation and propagation characteristics of hydraulic fracturing in multiple coal seams[J].Journal of Mining and Safety Engineering,2022,39(1):184-191.
[8]高杰,侯冰,陈勉,等.岩性差异及界面性质对裂缝起裂扩展的影响[J].岩石力学与工程学报,2018,37(增刊2):4108-4114. GAO Jie,HOU Bing,CHEN Mian,et al.Effects of lithology differences and interface pro-perties on fracture initiation and propagation[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(Supplement 2):4108-4114.
[9]张帆,马耕,冯丹.大尺寸真三轴煤岩水力压裂模拟试验与裂缝扩展分析[J].岩土力学,2019,40(5):1890-1897. ZHANG Fan,MA Geng,FENG Dan.Large-scale true triaxial coal-rock hydraulic fracturing simulation test and crack propagation analysis[J].Rock and Soil Mechanics,2019,40(5):1890-1897.
[10]ARZUAGA-GARCíA I,EINSTEIN H.Experimental study of fluid penetration and opening geometry during hydraulic fracturing[J].Engineering Fracture Mechanics,2020,230(Prepublish):106986-106986.
[11]唐梅荣,张广清,陈磊.压缩应力作用下Ⅰ型裂缝前端拉压分区特征研究[J].岩石力学与工程学报,2024,43(2):322-332. TANG Meirong,ZHANG Guangqing,CHEN Lei.Study on the characteristics of tension-compression partition at the front end of type I crack under compressive stre-ss[J].Chinese Journal of Rock Mechanics and Engineering,2024,43(2):322-332.
[12]ZHAO C,XING J,ZHOU Y,et al.Experimental investigation on hydraulic fracturing of granite specimens with double flaws based on DIC[J].Engineering Geology,2020,267(9):105510.
[13]LI Q B,EINSTEIN H H.Comparison of visual and acoustic emission observations in a four point bending experiment on barre granite[J].Rock Mechanics and Rock Engineering,2017,50(9):2277-2296.
[14]BLABER J,ADAIR B,ANTONIOU A.Ncorr:open-source 2D digital image correlation Matlab software[J].Experimental Mechanics,2015,55(6):1105-1122.
[15]马衍坤,李笑笑,翟少彬,等.含预制钻孔煤体承载破坏应变场与声发射响应真三轴试验[J].中国矿业大学学报,2024,53(3):497-508. MA Yankun,LI Xiaoxiao,ZHAI Shaobin,et al.True triaxial test of load failure strain field and acoustic emission response of coal mass with prefabricated boreholes[J].Journal of China University of Mining and Technology,2024,53(3):497-508.
[16]李笑笑,马衍坤.真三轴煤层钻孔承载破坏层理效应试验研究[J].中国安全生产科学技术,2024,20(3):97-102. LI Xiaoxiao,MA Yankun.Experimental study on the bedding effect of true triaxial coal seam drilling bearing failure[J].Journal of Safety Science and Technology,2024,20(3):97-102.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期: 2024-10-11
* 基金项目: 云南省重点研发计划项目(202303AA080014);国家自然科学基金项目(52227901);安徽省高校杰出青年科研项目(2024AH020001)
作者简介: 刘洪杰,硕士研究生,主要研究方向为煤岩动力灾害防治。
通信作者: 马衍坤,博士,教授,主要研究方向为煤岩动力灾害防治。
更新日期/Last Update: 2025-03-28