[1]HUANG Z,YANG S,ZHOU M,et al.Making accurate object detection at the edge:review and new approach[J].Artifcial Intelligence Review,2022,55(3):2245-2274.
[2]KANG J,TARIQ S,OH H.A survey of deep learning-based object detection methods and datasets for overhead imagery[J].IEEE Access,2022,10:20118-20134.
[3]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unifed,real-time object detection[C]//The IEEE Conference on Computer Vision and Pattern Recognition,2016.
[4]REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//The IEEE Conference on Computer Vision and Pattern Recognition,2017.
[5]邵延华,张铎,楚红雨,等.基于深度学习的YOLO目标检测综述[J].电子与信息学报,2022,44(10):3697-3708.
SHAO Yanhua,ZHANG Duo,CHU Hongyu,et al.A review of YOLO object detection based on deep learning[J].Journal of Electronics & Information Technology,2022,44(10):3697-3708.
[6]BOCKKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[EB/OL].(2020-04-23)[2025-01-06].https://arxiv.org/abs/2004.10934.
[7]JOCHER G,STOKEN A,BOROVEC J.Ultralytics/yolov5:V4.0-Nn.SiLU[M].2021.
[8]LIU W,ANGUELOV D,ERHHAN D,et al.SSD:single shot multibox detector[C]//Computer Vision-ECCV 2016,2016.
[9]FU C Y,LIU W,RANGA A,et al.DSSD:Deconvolutional Single Shot Detector[EB/OL].(2017-01-23)[2025-01-06].https://arxiv.org/abs/1701.06659.
[10]DUAN K,BAI S,XIE L,and et al.CenterNet:keypoint triplets for object detection[C]//The 2019 IEEE International Conference on Computer Vision,2019.
[11]REN S,HE K,GIRSHICK R,and et al.Towards real-time object detection with region proposal networks[C]//in Advances in Neural Information Processing Systems,2015:91-99.
[12]GIRSHICK R.Fast R-CNN[C]//The IEEE International Conference on Computer Vision,2015.
[13]GIRSHICK R,DONAHUEJ,DARRELL T,and et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//The IEEE conference on computer vision and pattern recognition,2014.
[14]LIN T Y,GOYAL P,GIRSHICK R B,and et al.Focal loss for dense object detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2020,42(2):318-327.
[1]田枫,白欣宇,刘芳,等.1种基于视频的油田危险区域入侵检测智能综合识别技术研究*[J].中国安全生产科学技术,2022,18(3):68.[doi:10.11731/j.issn.1673-193x.2022.03.010]
TIAN Feng,BAI Xinyu,LIU Fang,et al.Research on intelligent comprehensive recognition technology of intrusion detection in oilfield dangerous area based on video[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(1):68.[doi:10.11731/j.issn.1673-193x.2022.03.010]
[2]谢谦,董立红,吴雪菲.基于多源数据融合的煤矿工作面瓦斯浓度预测*[J].中国安全生产科学技术,2022,18(11):71.[doi:10.11731/j.issn.1673-193x.2022.11.010]
XIE Qian,DONG Lihong,WU Xuefei.Prediction of gas concentration in coal mining face based on multi-source data fusion[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(1):71.[doi:10.11731/j.issn.1673-193x.2022.11.010]
[3]崔铁军,郭大龙.基于改进YOLOX的变电站工人防护设备检测研究*[J].中国安全生产科学技术,2023,19(4):201.[doi:10.11731/j.issn.1673-193x.2023.04.029]
CUI Tiejun,GUO Dalong.Research on detection of protection equipment for substation workers based on improved YOLOX[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(1):201.[doi:10.11731/j.issn.1673-193x.2023.04.029]
[4]曹梅,杨超宇.基于小波的CNN-LSTM-Attention瓦斯预测模型研究*[J].中国安全生产科学技术,2023,19(9):69.[doi:10.11731/j.issn.1673-193x.2023.09.010]
CAO Mei,YANG Chaoyu.Research on CNN-LSTM-Attention gas prediction model based on wavelet[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(1):69.[doi:10.11731/j.issn.1673-193x.2023.09.010]
[5]赵泽华,王亚超,赵江平,等.基于改进YOLOv7-x的多场景火灾识别算法*[J].中国安全生产科学技术,2023,19(12):115.[doi:10.11731/j.issn.1673-193x.2023.12.015]
ZHAO Zehua,WANG Yachao,ZHAO Jiangping,et al.Multi-scene fire recognition algorithm based on improved YOLOv7-x[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(1):115.[doi:10.11731/j.issn.1673-193x.2023.12.015]
[6]蔡晨晖,梁晓刚,师剑雄,等.矿山视频大数据智能分析与安全生产监控平台研究*[J].中国安全生产科学技术,2024,20(1):65.[doi:10.11731/j.issn.1673-193x.2024.01.010]
CAI Chenhui,LIANG Xiaogang,SHI Jianxiong,et al.Research on mine video big data intelligent analysis and work safety monitoring platform[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(1):65.[doi:10.11731/j.issn.1673-193x.2024.01.010]
[7]王文标,时启衡,郝友维.基于改进SqueezeNet的火焰识别算法*[J].中国安全生产科学技术,2024,20(8):19.[doi:10.11731/j.issn.1673-193x.2024.08.003]
WANG Wenbiao,SHI Qiheng,HAO Youwei.Flame recognition algorithm based on improved SqueezeNet[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(1):19.[doi:10.11731/j.issn.1673-193x.2024.08.003]
[8]韩飞腾,刘永强,房玉东,等.基于注意力机制的安全帽佩戴状态检测模型*[J].中国安全生产科学技术,2024,20(8):196.[doi:10.11731/j.issn.1673-193x.2024.08.026]
HAN Feiteng,LIU Yongqiang,FANG Yudong,et al.Detection model for wearing status of safety helmet based on attention mechanism[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(1):196.[doi:10.11731/j.issn.1673-193x.2024.08.026]