[1]曾绪财,张葛祥,任涛,等.管道内检测研究进展及展望[J].交通信息与安全,2019,37(6):20-31.ZENG Xucai,ZHANG Gexiang.REN Tao,et al.Research progresses and prospects of pipeline internal inspection [J].Journal of Transport Information and Safety,2019,37 (6):20-31
[2]程诚.油气长输管道安全经济效益评价模型及应用[J].中国安全生产科学技术,2021,17(增刊1):56-61.CHENG Cheng.Safety and economic benefit evaluation model of long-distance oil and gas pipeline and its application [J].Journal of Safety Science and Technology,2021,17 (Supplement 1):56-61.
[3]石彤,刘啸奔,张琳,等.管道IMU弯曲应变解算算法优化与全尺寸试验验证[J].油气储运,2024,43(11):1269-1276.SHI Tong,LIU Xiaoben,ZHANG Lin,et al.Optimization of IMU-based bending strain solving algorithm and full-scale experimental validation[J].Oil & Gas Storage and Transportation,2024,43(11):1269-1276
[4]DESJARDINS G,NICKLE R,SKIBINSKY D,et al.Comparison of in-line inspection service provider Magnetic Flux Leakage (MFL) technology and analytical performance based on multiple runs on pipeline segments[C]//International Pipeline Conference,2012.
[5]HUANG K.3-D defect profile reconstruction from magnetic flux leakage signatures using wavelet basis function neural networks[D].Ames:Iowa State University,2000.
[6]赵晓明,李睿,陈朋超,等.中俄东线天然气管道弯曲变形识别与评价[J].油气储运,2020,39(7):763-768.ZHAO Xiaoming,LI Rui,CHEN Pengchao,et al.Identification and evaluation on bending deformation of China-Russia Eastern Gas Pipeline[J].Oil & Gas Storage and Transportation,2020,39(7):763-768
[7]何仁洋,刘艳贺,王海涛,等.基于IMU数据的应变解析技术及其应用[J].科学技术与工程,2024,24(7):2683-2689.HE Renyang,LIU Yanhe,WANG Haitao,et al.Strain analysis technology based on IMU data and it’s application [J].Science and Engineering,2024,24(7):2683-2689
[8]AJMI C,ZAPATA J,MARTNEZ-LVAREZ J J,et al.Using deep learning for defect classification on a small weld X-ray imaged at a set[J].Journal of Nondestructive Evaluation,2020,39(3):1-13.
[9]LE V K,CHEN Z,WONG Y W,et al.A complete online-SVM pipeline for case-based reasoning system:a study on pipe defect detection system[J].Soft Computing,2020(1):16917-16933.
[10]GAO B X,ZHAO H,MIAO X Y.Multi-modal cascade detection of pipeline defects based on deep transfer metric learning[J].Engineering Failure,Analysis,2024,160:108216.
[11]YAN B C,ZHENG J F,LI R,et al.Semi-supervised pipeline anomaly detection algorithm based on memory items and metric learning[J].Nondestructive Testing and Evaluation,2023,38(5):753-766.
[12]CHEN K,LI H T,LI C S,et al.An automatic defect detection system for petrochemical pipeline based on cycle-GAN and YOLOv5[J].Sensors 2022,22(20),7907
[13]崔国宁.基于深度学习的管道缺陷漏磁数据识别方法研究[D].沈阳:沈阳工业大学,2023.
[14]刘啸奔,刘燊,季蓓蕾,等.基于IMU数据的管道弯曲变形段智能识别方法[J].油气储运,2021,40(11):1228-1235.LIU Xiaoben,LIU Shen,JI Beilei,et al.Intelligent identification method of pipeline sections with bending deformation based on IMU data [J].Oil & Gas Storage and Transportation,2021,40(11):1228-1235.
[15]刘啸奔,张宏,夏梦莹,等.基于主成分分析和神经网络的管道泄漏识别方法[J].油气储运,2015,34(7):737-740LIU Xiaoben,ZHANG Hong,XIA Mengying,et al.Pipeline leakage recognition based on principal component analysis and neural network [J].Oil & Gas Storage and Transportation,2015,34(7):737-740.
[16]郭梦琪.基于IMU检测数据的中俄原油管道凹陷深度定量识别方法研究[D].北京:中国石油大学(北京),2023.
[17]王琳,马林杰,徐建,等.基于深度学习的油气管道变形管段识别方法[J].石油机械,2023,51(11):11-19.WANG Lin,MA Linjie,XU Jian,et al.Deformed section identification of oil and gas pipeline based on deep learning [J].China Petroleum Machinery,2023,51(11):11-19.
[18]陈颖,张仲伍.基于聚类分析和主成分分析的城市空气质量评价——以山西省11个地级市为例[J].山西师范大学学报(自然科学版),2020,34(4):72-78..CHEN Ying,ZHANG Zhongwu.Urban air quality assessment based on cluster analysis and principal component analysis:taking 11 prefecture-level cities in Shanxi province as an example [J].Journal of Shanxi Normal University(Natural Science Edition),2020,34(4):72-78.
[19]曹梅,杨超宇.基于小波的CNN-LSTM-Attention瓦斯预测模型研究[J].中国安全生产科学技术,2023,19(9):69-75.CAO Mei,YANG Chaoyu.Research on CNN-LSTM-Attention gas prediction model based on wavelet [J].Journal of Safety Science and Technology,2023,19(9):69-75.
[20]魏永合,宫俊宇.基于CNN-LSTM-Attention的滚动轴承故障诊断[J].沈阳理工大学学报,2022,41(4):73-77.WEI Yonghe,GONG Junyu.Fault diagnosis in rolling bearing based on CNN-LSTM-Attention [J].Journal of Shenyang Ligong University,2022,41(4):73-77.
[21]王玉静,李少鹏,康守强,等.结合CNN和LSTM的滚动轴承剩余使用寿命预测方法[J].振动.测试与诊断,2021,41(3):439-446,617.WANG Yujing,LI Shaopeng,KANG Shouqiang,et al.Method of predicting remaining useful life of rolling bearing combining CNN and LSTM [J].Journal of Vibration,Measurement & Diagnosis,2021,41(3):439-446,617.
[22]贾全烨,张强,宋博川.一种基于循环神经网络的电网客服语音文本实体识别算法[J].供用电,2020,37(6):13-20.JIA Quanye,ZHANG Qiang,SONG Bochuan.A text entity recognition algorithm based on recurrent neural network for customer service voice of state grid [J].Distribution & Utilization,2020,37(6):13-20.
[23]CHAUDHARI S, MITHAL V,POLATKAN G,et al.An attentive survey of attention models[J].ACM Transactionson Intelligent Systemsand Technology,2021,12(5):1-32.