[1]戴彦德.我国可持续发展中的能源问题[J].节能,2003(2):3-5.
DAI Yande.Energy issues in China’s sustainable development[J].Energy Conservation,2003(2):3-5.
[2]陈栋.颗粒特性对光散射法在线测量颗粒物质量浓度的影响研究[D].武汉:华中科技大学,2019.
[3]XU M,YU D,YAO H,et al.Coal combustion-generated aerosols:Formation and properties[J].Proceedings of the Combustion Institute,2011,33(1):1681-1697.
[4]POPE C A,BURNETT R T,THUN M J,et al.Lung cancer,cardiopulmonary mortality,and long-term exposure to fine particulate air pollution[J].JAMA,2002,287(9):1132.
[5]SEINFELD J H,PANDIS S N.Atmospheric chemistry and physics:from air pollution to climate change[M].New York:Wiley,1998.
[6]中华人民共和国卫生部.工作场所空气中粉尘测定 第1部分:总粉尘浓度:GBZ/T 192.1—2007[S].北京:人民卫生出版社,2007.
[7]中华人民共和国卫生部.工作场所空气中粉尘测定 第2部分:呼吸性粉尘浓度:GBZ/T 192.2—2007[S].北京:人民卫生出版社,2007.
[8]陈清华,许曾生,王小润,等.基于滤膜称重法的自动化粉尘质量浓度检测装置的研究 [J].煤炭学报,2024,49(7):2997-3006.
CHEN Qinghua,XU Zengsheng,WANG Xiaorun,et al.Design of automatic dust mass concentration detection device based on membrane weighing method[J].Journal of China Coal Society:2024,49(7):2997-3006.
[9]魏海天,王杰,陈述斌.基于数据融合的光散射法与β射线粉尘监测技术研究 [J/OL].矿业安全与环保,1-7[2024-11-09].http://kns.cnki.net/kcms/detail/50.1062.td.20240415.1651.002.html.
[10]赵政.基于光散射多源耦合的粉尘浓度检测技术[J].煤矿安全,2023,54(8):195-201.
ZHAO Zheng.Dust concentration detection technology based on light scattering multi-source coupling[J].Safety in Coal Mines,2023,54(8):195-201.
[11]陈建阁,李德文,许江,等.基于光散射法无动力粉尘质量浓度检测技术[J].煤炭学报,2023,48(增刊1):149-158.
CHEN Jian’ge,LI Dewen,XU Jiang,et al.Detection technology of unpowered dust concentration based on light scattering method[J].Journal of China Coal Society,2023,48(Supplement 1):149-158.
[12]余晓轲,柯丽华,张光权,等.基于图像技术的爆区粉尘浓度测量方法研究[J].矿业研究与开发,2024,44(4):168-174.
YU Xiaoke,KE Lihua,ZHANG Guangquan,et al.Measurement method of dust concentration in blasting area based on image technology[J].Mining Research and Development,2024,44(4):168-174.
[13]SABA T,REHMAN A,AL-DHELAAN A,et al.Evaluation of Current Documents Image Denoising Techniques:A Compar-ative Study[J].Applied Artificial Intelligence,2014,28(9):879-887.
[14]褚江,陈强,杨曦晨.全参考图像质量评价综述[J].计算机应用研究,2014,31(1):13-22.
CHU Jiang,CHEN Qiang,YANG Xichen.Review on full reference image quality assessment algorithms[J].Application Research of Computers,2014,31(1):13-22.
[15]SANKUR B.Statistical evaluation of image quality measures[J].Journal of Electronic Imaging,2002,11(2):206.
[16]张宸瑜.烟尘浓度光散射测量技术研究[D].南京:东南大学,2015.
[17]邢键.基于光后向散射法的烟尘浓度测量技术研究[D].哈尔滨:哈尔滨工业大学,2010.
[18]方庆,谢岸煌,谢仁礼.一种自适应反锐化掩膜清晰度增强算法[J].电视技术,2022,46(8):15-19.
FANG Qing,XIE Anhuang,XIE Renli.An adaptive unsharp masking sharpness enhancement algorithm[J].Video Engineering,2022,46(8):15-19.
[19]HEIL T,TATLOCK G J.Noise reduction in CCD measurements by improving the quality of dark-reference images[J].Microscopy,2018,67(suppl_1):i123-i132.
[20]韩思奇,王蕾.图像分割的阈值法综述[J].系统工程与电子技术,2002(6):91-94,102.
HAN Siqi,WANG Lei.A survey of thresholding methods for image segmentation[J].Systems Engineering and Electronics,2002(6):91-94,102.
[21]SMITH J P,BARON P A,MURDOCK D J.Response characteristics of scattered light aerosol sensors used for control monitoring[J].American Industrial Hygiene Association Journal,1987,48(3):219-229.
[22]GRNER P,BEMER D,FABRIS J F.Photometer measurement of polydisperse aerosols[J].Journal of Aerosol Science,1995,26(8):1281-1302.
[23]丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10.
DING Shifei,QI Bingjuan,TAN Hongyan.An overview on theory and algorithm of support vector machines[J].Journal of University of Electronic Science and Technology of China,2011,40(1):2-10.
[24]潘梦瑶,任瑛,王思源,等.基于梯度提升算法和SHAP的石家庄PM2.5和臭氧浓度预测及影响因素分析[J].环境科学学报,2024,44(7):402-409.
PAN Mengyao,REN Ying,WANG Siyuan,et al.Prediction of PM2.5 and ozone concentration in Shijiazhuang and analysis of influencing factors based on gradient boosting algorithm and SHAP.Acta Scientiae Circumstantiae:2024,44(7):402-409.
[25]赵耀忠,严俊龙,任吉凯,等.基于机器学习的露天煤矿粉尘浓度预测[J].煤炭工程,2022,54(增刊1):157-161.
ZHAO Yaozhong,YAN Junlong,REN Jikai,et al.Dust concentration prediction of open-pit coal mine based on machine learning[J].Coal Engineering,2022,54(Supplement 1):157-161.