|本期目录/Table of Contents|

[1]刘浩,徐晴晴,张来斌,等.极端天气条件下风电机组事故演化知识图谱的构建及分析*[J].中国安全生产科学技术,2024,20(10):5-11.[doi:10.11731/j.issn.1673-193x.2024.10.001]
 LIU Hao,XU Qingqing,ZHANG Laibin,et al.Construction and analysis of knowledge graph for wind turbine accident evolution under extreme weather conditions[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(10):5-11.[doi:10.11731/j.issn.1673-193x.2024.10.001]
点击复制

极端天气条件下风电机组事故演化知识图谱的构建及分析*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年10期
页码:
5-11
栏目:
学术论著
出版日期:
2024-10-30

文章信息/Info

Title:
Construction and analysis of knowledge graph for wind turbine accident evolution under extreme weather conditions
文章编号:
1673-193X(2024)-10-0005-07
作者:
刘浩徐晴晴张来斌李云涛周涛涛
(1.中国石油大学(北京) 安全与海洋工程学院,北京 102249;
2.应急管理部油气生产安全与应急技术重点实验室,北京 102249)
Author(s):
LIU Hao XU Qingqing ZHANG Laibin LI Yuntao ZHOU Taotao
(1.College of Safety and Ocean Engineering,China University of Petroleum (Beijing),Beijing 102249,China;
2.Key Laboratory of Oil and Gas Production Safety and Emergency Technology,Ministry of Emergency Management,Beijing 102249,China)
关键词:
极端天气条件风电机组深度学习知识图谱事故演化
Keywords:
extreme weather conditions wind turbine deep learning knowledge graph accident evolution
分类号:
X913
DOI:
10.11731/j.issn.1673-193x.2024.10.001
文献标志码:
A
摘要:
极端天气(强风、雷电、盐雾、冰冻)频发,对风电机组的安全稳定运行带来极大的挑战。传统的事故演化和风险预警方法对事故运行数据有较强的依赖性,而极端天气条件下难以提供足够的可靠数据进行分析,这大大增加对风电机组进行监测预警的难度。针对上述问题,本文利用专家知识和风电机组事故的文本数据,提出一种基于知识图谱的风电机组事故演化分析模型。该模型首先借助深度学习算法进行知识抽取,以实现对于事故风险的感知,随后进行知识图谱的构建以及事故的演化推理。本文以雷电和高温灾害为例,借助所提模型进行风电机组事故演化推理和事故风险的定性推理分析。研究结果表明:该模型能够实现极端天气条件下的风电机组事故信息的有效感知,并进行事故的演化推理,可为风电机组的风险管理提供一个有效的工具。
Abstract:
The increasing frequency of extreme weather events (including strong winds,lightning,salt fog and freezing conditions) poses significant challenges to the safe and stable operation of wind turbines.The traditional accident evolution and risk early-warning methods have strong dependence on the accident operation data,and it is difficult to provide sufficient reliable data for analysis under extreme weather conditions,which greatly increases the difficulty of monitoring and early-warning of wind turbines.In view of the above problems,an analysis model of wind turbine accident evolution based on knowledge graph was proposed by using the expert knowledge and text data of wind turbine accidents.The knowledge extraction was carried out by means of deep learning algorithm to realize the perception of accident risk,and then the construction of knowledge graph and the evolutionary reasoning of accident were conducted.Taking the lightning and high temperature disasters as examples,the proposed model was used to carry out the qualitative reasoning analysis of wind turbine accident evolution reasoning and accident risk.The results show that the model can realize the effective perception of wind turbine accident information under extreme weather conditions,and carry out the evolution reasoning of accident,which can provide an effective tool for the risk management of wind turbines.

参考文献/References:

[1]YOU F,SHAIK S,ROKONUZZAMAN M,et al.Fire risk assessments and fire protection measures for wind turbines:A review[J].Heliyon,2023,9(9):e19664.
[2]SHRESTHA S,PANCHALOGARANJAN V,MOSES P.The February 2021 US Southwest power crisis[J].Electric Power Systems Research,2023,217:109-124.
[3]张萍,赵新贺,聂鑫鹏,等.基于ATP-EMTP的风电机组塔筒二次雷电回击暂态分析[J].高压电器,2023,59(5):163-169. ZHANG Ping,ZHAO Xinhe,NIE Xinpeng,et al.Transient analysis of secondary lightning strike in wind turbine tower based on ATP-EMTP[J].High Voltage Apparatus,2023,59(5):163-169.
[4]CHOU J S,CHIU C K,HUANG I K,et al.Failure analysis of wind turbine blade under critical wind loads[J].Engineering Failure Analysis,2013,27:99-118.
[5]ZHANG X,SUN L,SUN H,et al.Floating offshore wind turbine reliability analysis based on system grading and dynamic FTA[J].Journal of Wind Engineering and Industrial Aerodynamics,2016,154:21-33.
[6]RAMIREZ J R,SRENSEN J D.Non-parametric bayesian updating within the assessment of reliability for offshore wind turbine support structures[C].The 11th International Conference on Applications of Statistics and Probability in Civil Engineering.CRC Press,2011:1256-1264.
[7]SINHA Y,STEEL J A.A progressive study into offshore wind farm maintenance optimisation using risk based failure analysis[J].Renewable and Sustainable Energy Reviews,2015,42:735-742.
[8]ZHU D,DING Z,HUANG X,et al.Probabilistic modeling for long-term fatigue reliability of wind turbines based on Markov model and subset simulation[J].International Journal of Fatigue,2023,173:107685.
[9]陈传刚,胡瑾秋,韩子从,等.恶劣环境条件下海外天然气管道站场事故演化知识图谱建模及预警方法[J].清华大学学报(自然科学版),2022,62(6):1081-1087. CHEN Chuan’gang,HU Jinqiu,HAN Zicong,et al.Knowledge graph based early warning method for accident evolution in natural gas pipeline station abroad for harsh environmental conditions[J].Journal of Tsinghua University (Science and Technology),2022,62(6):1081-1087.
[10]SAAD M,ZHANG Y,TIAN J,et al.A graph database for life cycle inventory using Neo4j[J].Journal of Cleaner Production,2023,393:136344.
[11]LIU X,MAO T,SHI Y,et al.Overview of knowledge reasoning for knowledge graph[J].Neurocomputing,2024:127571.
[12]胡玉玲,万雨瑞,李紫旋,等.融合知识图谱和案例推理的燃气应急辅助决策研究[J].消防科学与技术,2024,43(2):143-148. HU Yuling,WAN Yurui,LI Zixuan,et al.Research on gas emergency assistance decisionmaking by integrating knowledge graph and casebased reasoning[J].Fire Science and Technology,2024,43(2):143-148.
[13]CARDOSO S D,DA SILVEIRA M,PRUSKI C.Construction and exploitation of an historical knowledge graph to deal with the evolution of ontologies[J].Knowledge-Based Systems,2020,194:105508.
[14]周佳乐.工业机器人故障诊断知识图谱构建方法研究[D].广州:广东工业大学,2022.
[15]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[C].North American Chapter of the Association for Computational Linguistics,2019:4171-4186.
[16]鞠冠章,王靖然,崔琛,等.极端天气事件对新能源发电和电网运行影响研究[J].智慧电力,2022,50(11):77-83. JU Guanzhang,WANG Jingran,CUI Chen,et al.Impact of extreme weather events on new energy power generation and power grid operation[J].Smart Power,2022,50(11):77-83.
[17]程江洲,冯馨以,冯梦婷,等.计及气象因素的风电机组故障诊断与风险预测[J].科学技术与工程,2022,22(22):9645-9651. CHENG Jiangzhou,FENG Xinyi,FENG Mengting,et al.Wind turbine fault diagnosis and risk prediction considering meteorological factors[J].Science Technology and Engineering,2022,22(22):9645-9651.
[18]黄简,杨程,冯天波,等.面向风电机组运维的知识图谱构建研究与应用[J].电力系统保护与控制,2024,52(8):167-177. HUANG Jian,YANG Cheng,FENG Tianbo,et al.Research and application of knowledge graph construction for wind turbine operation andmaintenance[J].Power System Protection and Control,2024,52(8):167-177.
[19]李兵,陈倩,王晓鹏.风电场雷灾事故典型案例分析与对策措施[J].高原山地气象研究,2022,42(S2):134-136. LI Bing,CHEN Qian,WANG Xiaopeng.Typical Case Analysis and Countermeasures of Wind Farm Lightning Disaster[J].Plateau and Mountain Meteorology Research,2022,42(S2):134-136.

相似文献/References:

[1]王帅.自然环境对风力发电机组安全运行的影响分析[J].中国安全生产科学技术,2009,5(6):214.
 WANG Shuai.Analysis of impact on safety operation of wind generating set by natural environment[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2009,5(10):214.
[2]佘应森,李鹏,梁俊宇,等.基于多尺度排列熵和极限学习机的风机叶片覆冰故障检测方法*[J].中国安全生产科学技术,2022,18(12):19.[doi:10.11731/j.issn.1673-193x.2022.12.003]
 SHE Yingsen,LI Peng,LIANG Junyu,et al.Detection method on blade icing fault of wind turbine based on multi-scale permutation entropy and extreme learning machine[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(10):19.[doi:10.11731/j.issn.1673-193x.2022.12.003]

备注/Memo

备注/Memo:
收稿日期: 2024-04-19
* 基金项目: 中国石油科技创新基金研究项目(2021DQ02-0801)
作者简介: 刘浩,博士研究生,主要研究方向为风电机组的安全运行控制。
通信作者: 徐晴晴,博士,讲师,主要研究方向为复杂工业过程的风险评估、状态监测及模型预测控制。
更新日期/Last Update: 2024-10-31