|本期目录/Table of Contents|

[1]孙卓越,吴拥政,周鹏赫.冲击载荷下砂质泥岩破碎分形特征*[J].中国安全生产科学技术,2024,20(6):133-139.[doi:10.11731/j.issn.1673-193x.2024.06.018]
 SUN Zhuoyue,WU Yongzheng,ZHOU Penghe.Fragmentation fractal characteristics of sandy mudstone under impact load[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(6):133-139.[doi:10.11731/j.issn.1673-193x.2024.06.018]
点击复制

冲击载荷下砂质泥岩破碎分形特征*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年6期
页码:
133-139
栏目:
职业安全卫生管理与技术
出版日期:
2024-06-30

文章信息/Info

Title:
Fragmentation fractal characteristics of sandy mudstone under impact load
文章编号:
1673-193X(2024)-06-0133-07
作者:
孙卓越吴拥政周鹏赫
(1.中煤科工开采研究院有限公司,北京 100013;
2.煤炭科学研究总院 开采研究分院,北京 100013)
Author(s):
SUN Zhuoyue WU Yongzheng ZHOU Penghe
(1.CCTEG Coal Mining Research Institute,Beijing 100013,China;
2.Coal Mining and Designing Branch,China Coal Research Institute,Beijing 100013,China)
关键词:
岩石动力学分离式霍普金森压杆(SHPB)分形维数应变率破碎形态
Keywords:
rock dynamics split Hopkinson pressure bar (SHPB) fractal dimension strain rate fragmentation morphology
分类号:
X936;TU45
DOI:
10.11731/j.issn.1673-193x.2024.06.018
文献标志码:
A
摘要:
为研究砂质泥岩在冲击载荷下的破碎分形特征,采用霍普金森压杆试验装置,对砂质泥岩试样开展冲击压缩试验,探究其在5级冲击气压和2种长径比下的应力-应变曲线特征和破坏形态,并引入分形维数量化破碎程度和破碎块度分布,分析分形维数与加载值、强度值和能量值的关系。研究结果表明:冲击载荷下砂质泥岩破坏演化主要分为裂隙压实段、以弹性变形为主的弹-塑性稳定段、以塑性变形为主的塑-弹性非稳定段、宏观破坏段4个阶段,对于冲击前长度20 mm砂质泥岩试样,在裂隙压实段试样被压缩至19.86 mm,压缩量为0.7%;冲击载荷下砂质泥岩试样呈劈裂破坏,且破碎块度分布具有较好分形规律,长径比0.4和0.8试样的分形维数与应变率、动态抗压强度、破碎耗能密度均呈正相关;相同冲击气压下,长径比0.4试样对应变率和动态抗压强度的敏感性较长径比0.8更强;当破碎耗能密度相同时,长径比0.4试样较长径比0.8的分形维数更大。研究结果可为砂质泥岩顶底板巷道的防冲治理提供一定理论参考。
Abstract:
To study the fragmentation fractal characteristics of sandy mudstone under impact load,the split Hopkinson pressure bar (SHPB) test device was used to conduct the impact compression tests on the sandy mudstone samples,and the stress-strain curve characteristics and failure modes under five-stage impact pressure and two length-to-diameter ratios were explored.Furthermore,the fractal dimension was introduced to quantify the fragmentation degree and the distribution of fragmentation size,and the relationship between the fractal dimension and the loading value,strength value,and energy value was analyzed.The results show that the failure evolution of sandy mudstone under impact load can be divided into the crack compaction section,elastic-plastic stable section dominated by elastic deformation,plastic-elastic unstable section dominated by plastic deformation,and macroscopic failure section.For the sandy mudstone sample with a length of 20 mm before impact,the sample is compressed to 19.86 mm in the crack compaction section,with a compression amount of 0.7%.Under the impact load,the sandy mudstone sample exhibits the splitting failure,and the fragmentation size distribution has a good fractal pattern.The fractal dimension of LD 0.4 (length-to-diameter ratio of 0.4) and LD 0.8 (length-to-diameter ratio of 0.8) is positively correlated with the strain rate,dynamic compressive strength,and fragmentation energy dissipation density.Under the same impact pressure,LD 0.4 has a stronger sensitivity to strain rate and dynamic compressive strength.Under the same fragmentation energy dissipation density,the fractal dimension of LD 0.4 is larger.The research results can provide certain theoretical support for the anti-erosion treatment of roadways with sandy mudstone roof and floor.

参考文献/References:

[1]魏启明,赵俊杰,王虎,等.小煤柱巷道围岩变形的力学机理及演化过程研究[J].中国安全生产科学技术,2023,19(3):73-78. WEI Qiming,ZHAO Junjie,WANG Hu,et al.Study on mechanical mechanism and evolution process of surrounding rock deformation in small coal pillar roadway[J].Journal of Safety Science and Technology,2023,19(3):73-78.
[2]胡千庭,刘荣辉,李全贵,等.单轴压缩下典型煤岩破坏的声发射特征研究[J].地下空间与工程学报,2023,19(6):1769-1781. HU Qianting,LIU Ronghui,LI Quangui,et al.Acoustic emission characteristics stucty of typical coal rock failure under uniaxial compression[J].Chinese Journal of Underground Space and Engineering,2023,19(6):1769-1781.
[3]李夕兵,宫凤强.基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J].煤炭学报,2021,46(3):846-866. LI Xibing,GONG Fengqiang.Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J].Journal of China Coal Society,2021,46(3):846-866.
[4]解北京,于瑞星,陈冬新,等.动载下石灰岩能耗指标影响因素研究[J].中国安全生产科学技术,2022,18(11):62-70. XIE Beijing,YU Ruixing,CHEN Dongxin,et al.Study on influencing factors of energy consumption index of limestone under dynamic load[J].Journal of Safety Science and Technology,2022,18(11):62-70.
[5]龚爽,赵毅鑫,周磊,等.冲击荷载作用下含双孔洞裂纹石灰岩动态断裂行为[J].煤炭学报,2023,48(8):3030-3047. GONG Shuang,ZHAO Yixin,ZHOU Lei,et al.Dynamic fracture behavior of limestone specimens containing double holes and crack under impact loading[J].Journal of China Coal Society,2023,48(8):3030-3047.
[6]孙卓越,吴拥政,孙久政,等.三维动静加载下煤样动态变形模量长径比效应[J].采矿与岩层控制工程学报,2022,4(4):67-77. SUN Zhuoyue,WU Yongzheng,SUN Jiuzheng,et al.Length-to-diameter ratio effect of dynamic deformation modulus of coalsamples under three-dimensional dynamic and static loading[J].Journal of Mining and Strata Control Engineering,2022,4(4):67-77.
[7]王雁冰,张瑶瑶,聂俊文,等.冲击荷载下含孔洞砂岩的力学特性[J].采矿与岩层控制工程学报,2023,5(1):78-88. WANG Yanbing,ZHANG Yaoyao,NIE Junwen,et al.Mechanical properties of sandstone with holes under impact load[J].Journal of Mining and Strata Control Engineering,2023,5(1):78-88.
[8]闻磊,冯文杰,李明烨,等.应变率对含裂隙红砂岩裂纹扩展模式及破碎特征的影响[J].爆炸与冲击,2023,43(11):88-107. WEN Lei,FENG Wenjie,LI Mingye,et al.Strain rate effect on crack propagation and fragmentation characteristics of red sandstone containing pre-cracks[J].Explosion and Shock Waves,2023,43(11):88-107.
[9]周俊,赵光明,孟祥瑞,等.高径比差异条件下花岗岩动态冲击能量耗散及破碎特征[J].采矿与安全工程学报,2023,40(2):379-386. ZHOU Jun,ZHAO Guangming,MENG Xiangrui,et al.Dynamic impact energy dissipation characteristics of granite with different height-diameter ratios[J].Journal of Mining and Safety Engineering,2023,40(2):379-386.
[10]纪杰杰,李洪涛,吴发名,等.冲击荷载作用下岩石破碎分形特征[J].振动与冲击,2020,39(13):176-183,214. JI Jiejie,LI Hongtao,WU Faming,et al.Fractal characteristics of rock fragmentation under impact load[J].Journal of Vibration and Shock,2020,39(13):176-183,214.
[11]王磊,邹鹏,焦振华,等.冲击载荷下两种应变率作用方式煤岩能量演化及分形特征研究[J].振动与冲击,2022,41(14):280-289. WANG Lei,ZOU Peng,JIAO Zhenhua,et al.Energy evolution and fracture characteristics of coal and rock under impact load with two kinds of strain rate action modes[J].Journal of Vibration and Shock,2022,41(14):280-289.
[12]刘雅甜,方士正,何松林,等.动载作用下铁矿石能量耗散规律及破坏特征试验研究[J].金属矿山,2022(6):46-54. LIU Yatian,FANG Shizheng,HE Songlin,et al.Experimental research on energy dissipation law and failure characteristics of iron ore under dynamic load[J].Metal Mine,2022(6):46-54.
[13]张慧梅,陈世官,王磊,等.扰动冲击下弱胶结红砂岩的能量耗散与分形特征[J].岩土工程学报,2022,44(4):622-631. ZHANG Huimei,CHEN Shiguan,WANG Lei,et al.Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact[J].Chinese Journal of Geotechnical Engineering,2022,44(4):622-631.
[14]李成杰,徐颖,张宇婷,等.冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J].岩石力学与工程学报,2019,38(11):2231-2241. LI Chengjie,XU Ying,ZHANG Yuting,et al.Study on energy evolution and fractal characteristics of cracked coal-rock-like combined body under impact loading[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(11):2231-2241.
[15]孙卓越.红庆河煤矿煤体动态力学特性试验研究[D].北京:煤炭科学研究总院,2021.
[16]吴拥政,孙卓越,付玉凯.三维动静加载下不同长径比煤样力学特性及能量耗散规律[J].岩石力学与工程学报,2022,41(5):877-888. WU Yongzheng,SUN Zhuoyue,FU Yukai.Mechanical properties and energy dissipation laws of coal samples with different length-to-diameter ratios under 3D coupled static and dynamic loads[J].Chinese Journal of Rock Mechanics and Engineering,2022,41(5):877-888.
[17]张科,叶锦明,刘享华.冻融循环作用下受荷砂岩的能量演化与破碎分形特征[J].中国安全生产科学技术,2021,17(8):111-116. ZHANG Ke,YE Jinming,LIU Xianghua.Energy evolution and fractured fractal characteristics of loaded sandstone under freeze-thaw cycles[J].Journal of Safety Science and Technology,2021,17(8):111-116.
[18]刘石,许金余,白二雷,等.基于分形理论的岩石冲击破坏研究[J].振动与冲击,2013,32(5):163-166. LIU Shi,XU Jinyu,BAI Erlei,et al.Research on impact fracture of rock based on fractal theory[J].Journal of Vibration and Shock,2013,32(5):163-166.

相似文献/References:

[1]曾晟,江博为,邓显石,等.层状节理岩体模型冲击实验[J].中国安全生产科学技术,2016,12(1):176.[doi:10.11731/j.issn.1673-193x.2016.01.033]
 ZENG Sheng,JIANG Bowei,DENG Xianshi,et al.Impact tests on model of layered and jointed rock mass[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):176.[doi:10.11731/j.issn.1673-193x.2016.01.033]
[2]高强,汪海波,吕闹,等.不同冲击速度下硬煤的力学特性试验研究[J].中国安全生产科学技术,2019,15(1):69.[doi:10.11731/j.issn.1673-193x.2019.01.011]
 GAO Qiang,WANG Haibo,LYU Nao,et al.Experimental study on mechanical characteristics of hard coal under different impact velocities[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2019,15(6):69.[doi:10.11731/j.issn.1673-193x.2019.01.011]
[3]解北京,梁天宇,李晓旭,等.3种基体材料开孔泡沫金属动力学特征研究*[J].中国安全生产科学技术,2023,19(7):30.[doi:10.11731/j.issn.1673-193x.2023.07.005]
 XIE Beijing,LIANG Tianyu,LI Xiaoxu,et al.Study on dynamic characteristics of open-cell metal foams with three kinds of matrix materials[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(6):30.[doi:10.11731/j.issn.1673-193x.2023.07.005]

备注/Memo

备注/Memo:
收稿日期: 2024-01-18
* 基金项目: 中煤科工开采研究院有限公司科技创新基金(KCYJY-2023-QN-01);国家自然科学基金面上项目(52174080,51974160)
作者简介: 孙卓越,硕士,助理研究员,主要研究方向为岩石动力学。
通信作者: 吴拥政,博士,研究员,主要研究方向为巷道围岩控制。
更新日期/Last Update: 2024-06-25