|本期目录/Table of Contents|

[1]路頔,王丽晶.SK扰流器液氮泡沫发生装置混合换热性能研究*[J].中国安全生产科学技术,2024,20(6):111-117.[doi:10.11731/j.issn.1673-193x.2024.06.015]
 LU Di,WANG Lijing.Research of mixing and heat transfer performance of liquid nitrogen foam generator with SK spoiler[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(6):111-117.[doi:10.11731/j.issn.1673-193x.2024.06.015]
点击复制

SK扰流器液氮泡沫发生装置混合换热性能研究*
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
20
期数:
2024年6期
页码:
111-117
栏目:
职业安全卫生管理与技术
出版日期:
2024-06-30

文章信息/Info

Title:
Research of mixing and heat transfer performance of liquid nitrogen foam generator with SK spoiler
文章编号:
1673-193X(2024)-06-0111-07
作者:
路頔王丽晶
(应急管理部上海消防研究所,上海200032)
Author(s):
LU Di WANG Lijing
(Shanghai Fire Research Institute of MEM,Shanghai 200032,China)
关键词:
液氮泡沫SK扰流器数值模拟
Keywords:
liquid nitrogen foam SK spoiler numerical simulation
分类号:
X937;X932
DOI:
10.11731/j.issn.1673-193x.2024.06.015
文献标志码:
A
摘要:
为提高液氮泡沫发生装置混合发泡性能、缓解冰堵,探究SK扰流器混合换热特性,开展数值模拟并进行实验验证。通过锥形、SK扰流器对不同液氮流速、间距、形状参数的数值仿真对比分析出口氮气体积分数、变异系数以及沿程温度,并通过因子效应极差分析对比长径比、单元数、间距对混合均匀性的影响效应。研究结果表明:SK扰流器相比于锥形扰流器,通过引入旋流破坏流动分层,变异系数下降83%,气液混合和换热性能大幅提高。此外,随着液氮流量增大,管内局部低于冰点容易形成冰堵,建议最大流量比位于1∶33~1∶50之间。随着液氮射流与扰流器间距增大,液氮汽化率下降,出口氮气体积分数和速度相应降低,10 mm间距效果更优。在300 mm扰流器长度下,随着扰流器长径比减小,混合均匀性先提高后下降,压力损失逐渐增大;综合考虑压力损失和混合均匀度,最优长径比约为0.75;长径比因子对变异系数影响较大。研究结果可为液氮泡沫发生装置设计提供指导,提高泡沫发泡性能。
Abstract:
In order to enhance the mixing and foaming performance of the liquid nitrogen foam generator and mitigate the issue of ice blockage,the numerical simulation was conducted followed by experimental validation to study the mixing and heat transfer characteristic of SK spoiler.Through the numerical simulation and comparative analysis of different liquid nitrogen flow velocity,spacing,and shape parameters of the cone spoiler and SK spoiler,the outlet nitrogen volume fraction,coefficient of variation,and temperature along the way were studied.Additionally,the effects of aspect ratios,number of units,and spacing on mixing homogeneity were compared using the range analysis for factor effects.The results show that the SK spoiler,compares to the cone spoiler,significantly improves the gas-liquid mixing and heat transfer performance by introducing the swirling flow to disrupt flow stratification,resulting in an 83% reduction in the coefficient of variation.Furthermore,as the flow rate of liquid nitrogen increases,the local sub-freezing conditions within the pipe can lead to ice blockage,suggesting the maximum flow rate ratio ranging from 1∶33 to 1∶50.With the increase in the distance between liquid nitrogen jet and spoiler,the vaporization rate of liquid nitrogen decreases,leading to the corresponding reduction in the outlet nitrogen volume fraction and velocity,and the effect is better under 10 mm spacing.Under the spoiler length of 300 mm,the mixing homogeneity increases first and then decreases with the decrease of spoiler aspect ratio,while the pressure loss gradually increases.Comprehensively considering the pressure loss and mixing homogeneity,the optimal aspect ratio is 0.75,and the aspect ratio has a significant impact on the coefficient of variation.The research results can provide guidance for the design of liquid nitrogen foam generator and enhancing the foaming performance.

参考文献/References:

[1]张保坡.浮顶储油罐灭火问题分析及改进措施[J].油气储运,2009,28(3):56-58. ZHANG Baopo.Analysis on fire extinguishing of floating-roof oil tank and improvement measurement[J].Oil & Gas Storage and Transportation,2009,28(3):56-58.
[2]WANG Z N,CHEN J,CHENG W C,et al.Investigation into the tempo-spatial distribution of recent fire hazards in China[J].Natural Hazards,2018,92(3):1889-1907.
[3]牟善军,郎需庆,牟小冬,等.大流量液氮泡沫灭火系统应用探究[J].劳动保护,2019(1):18-21. MOU Shanjun,LANG Xuqing,MOU Xiaodong,et al.Application of large flow liquid nitrogen foam fire extinguishing system[J].Labor Protection,2019(1):18-21.
[4]WANG K,FANG J,SHAH H R,et al.Research on the influence of foaming gas in compressed air/nitrogen foam on extinguishing the n-heptane tank fire[J].Journal of Loss Prevention in the Process Industries,2021,72(2):104533.
[5]GUO D,ZHANG G W,ZHU G Q,et al.Applicability of liquid nitrogen fire extinguishing in urban underground utility tunnel[J].Case Studies in Thermal Engineering,2020,21:100657.
[6]SHAO Z L,WANG D M,WANG Y M,et al.Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine,China[J].Natural Hazards,2015,75(2):1833-1852.
[7]傅学成,包志明,陈涛,等.压缩空气泡沫的隔热防护性能研究[J].消防科学与技术,2009,28(3):204-207. FU Xuecheng,BAO Zhiming,CHEN Tao,et al.Study on heat exposure protection of foam produced by compressed air foam systems[J].Fire Science and Technology,2009,28(3):204-207.
[8]LU X X,WANG D M,SHEN W,et al.Experimental investigation of the pressure gradient of a new spiral mesh foam generator [J].Process Safety and Environmental Protection,2015,94:44-54.
[9]LIU A B,DELICHATSIOS M A,LEVENDIS Y A.On the trajectory and reach of fire-suppressant liquid nitrogen droplets released from a spray nozzle[J].Process Safety and Environmental Protection,2022,161:273-284.
[10]CLARKE H,MARTINEZ A,CROOKES R,et al.Experimental study of jet structure and pressurisation upon liquid nitrogen injection into water[J].International Journal of Multiphase Flow,2010,36(11):940-949.
[11]牟善军,郎需庆,周日峰,等.液氮泡沫发生器内流动特性研究[J].火灾科学,2020,29(2):121-128. MOU Shanjun,LANG Xuqing,ZHOU Rifeng,et al.Characteristics of flow in a novel liquid nitrogen foam generator[J].Fire Safety Science,2020,29(2):122-128.
[12]ZHOU R F,ZHANG X,YANG Z,et al.Study on the flow characteristics of nitrogen gas foam in horizontal foam generator[J].International Journal of Multiphase Flow,2020,129(1):103326.
[13]LIU Y L,WANG D M,XIE M,et al.Research on the mixing mechanism and parameter optimization of liquid nitrogen foam generator[J].Energies,2022,15:8714.
[14]CHEN D S,CUI B L,ZHU Z C.Numerical simulation of the effect of upstream swirling flow on swirl meter performance[J].Journal of Thermal Science,2018,27(2):117-124.
[15]SALEEM A,FAROOQ S,KARIMI I A,et al.A CFD simulation study of boiling mechanism and BOG generation in a full-scale LNG storage tank[J].Computers & Chemical Engineering,2018,115:112-120.
[16]STEC M,SYNOWIEC P M.Study of fluid dynamic conditions in the selected static mixers part Ⅲ-research of mixture homogeneity[J].The Canadian Journal of Chemical Engineering,2019,97(4),995-1007.

相似文献/References:

[1]李孜军,杨东杰,牛娇,等.溜井泡沫抑尘剂的研制及其抑尘性能实验研究[J].中国安全生产科学技术,2015,11(8):64.[doi:10.11731/j.issn.1673-193x.2015.08.011]
 LI Zi-jun,YANG Dong-jie,NIU Jiao,et al.Experimental study on development of foam dust suppression agent in ore pass and its dust suppression performance[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2015,11(6):64.[doi:10.11731/j.issn.1673-193x.2015.08.011]
[2]李和万,王来贵,张春会,等.冷加载循环作用下煤样强度特性研究[J].中国安全生产科学技术,2016,12(4):10.[doi:10.11731/j.issn.1673-193x.2016.04.002]
 LI Hewan,WANG Laigui,ZHANG Chunhui,et al.Study on characteristic of coal sample strength under cyclic cold loading[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(6):10.[doi:10.11731/j.issn.1673-193x.2016.04.002]
[3]何灵欣,张佳庆,刘睿,等.特高压换流站消防机器人长距离输送压缩空气泡沫有效性研究*[J].中国安全生产科学技术,2024,20(8):150.[doi:10.11731/j.issn.1673-193x.2024.08.020]
 HE Lingxin,ZHANG Jiaqing,LIU Rui,et al.Study on effectiveness of long-distance compressed air foam delivery by firefighting robots at ultra-high voltage converter stations[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2024,20(6):150.[doi:10.11731/j.issn.1673-193x.2024.08.020]

备注/Memo

备注/Memo:
收稿日期: 2023-10-12
* 基金项目: 应急管理部消防救援科技计划项目(2020XFZD09);应急管理部上海消防研究所科技计划项目(22SX20)
作者简介: 路頔,硕士,工程师,主要研究方向为火灾科学、灭火技术与装备、计算流体力学。
通信作者: 王丽晶,硕士,研究员,主要研究方向为灭火理论、灭火技术与装备研发。
更新日期/Last Update: 2024-06-25