|本期目录/Table of Contents|

[1]吕垒,张教福,朱权洁,等.矿山微震时间序列的相空间构建与混沌吸引子维数确立[J].中国安全生产科学技术,2016,12(2):27-32.[doi:10.11731/j.issn.1673-193x.2016.02.005]
 LYU Lei,ZHANG Jiaofu,ZHU Quanjie,et al.Construction of phase space and determination of chaotic attractor dimension for time series of mine microseismic[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(2):27-32.[doi:10.11731/j.issn.1673-193x.2016.02.005]
点击复制

矿山微震时间序列的相空间构建与混沌吸引子维数确立()
分享到:

《中国安全生产科学技术》[ISSN:1673-193X/CN:11-5335/TB]

卷:
12
期数:
2016年2期
页码:
27-32
栏目:
学术论著
出版日期:
2016-02-29

文章信息/Info

Title:
Construction of phase space and determination of chaotic attractor dimension for time series of mine microseismic
文章编号:
1673-193X(2016)-02-0027-06
作者:
吕垒1张教福2朱权洁3李莹莹1
1. 中钢集团武汉安全环保研究院有限公司,湖北 武汉 430081;2. 武汉钢铁集团开圣科技有限责任公司,湖北 武汉 430070;3. 华北科技学院 安全工程学院(中心),北京 101601
Author(s):
LYU Lei1 ZHANG Jiaofu2 ZHU Quanjie3 LI Yingying1
1.Sinosteel Corporation Wuhan Safety & Environmental Protection Research Institute, Wuhan Hubei 430081, China;2. Kaisheng Science and Technology Co., Ltd., Wuhan Iron and Steel (Group) Corporation, Wuhan Hubei 430070, China; 3.Safety Engineering College, North China Institute of Science and Technology, Beijing 101601, China
关键词:
微震信号混沌理论吸引子分维自相关
Keywords:
microseismic signal chaos theory attractor fractal dimension autocorrelation
分类号:
X936
DOI:
10.11731/j.issn.1673-193x.2016.02.005
文献标志码:
A
摘要:
为了进一步挖掘矿山微震信号内蕴藏的信息,初步研究了微震信号的混沌特性。针对矿山微震信号非平稳、非线性的特点开展了以下研究:建立了一维时间序列的相空间重构模型,分析了一维和多维微震时间序列的空间相型;选取了矿山现场监测一维微震时间序列(N=2 000),利用自相关函数求取了时间序列的延迟时间τ;建立了微震时间序列关联分维数的循环计算模型;最终确立了相应临界距离r(r=250)和相空间维数m(m=50)的值,计算求得分维数D的值为1.088 5。研究结果表明,微震一维时间序列的吸引子维数存在,同时也证明了微震时间序列具有混沌特性。该研究结果为利用混沌理论处理矿山微震数据,如初始到时精确拾取、信号特征分析与提取以及波形降噪等提供理论依据。
Abstract:
The chaotic characteristics of microseismic signals were studied to investigate the underlying information of mine microseismic signals, and the following research was conducted aiming at the non-stationary and nonlinear characteristics of mine microseismic signals. A phase space reconstruction model of one-dimensional time series was established, and the spatial phase types of one-dimensional and multi-dimensional microseismic time series were analyzed. The delay time τ of time series was determined by using the autocorrelation function for the one-dimensional microseismic time series obtained by field monitoring in mine (N=2 000). The circulation calculation model on correlation fractal dimension of microseism time series was established. Finally, the values of corresponding critical distance r(r=250) and phase space dimension m(m=50) were determined, and the value of fractal dimension D was determined to be 1.088 5. The results showed that the attractor dimension of microseismic one-dimensional time series was existent, and the microseismic time series has the chaotic characteristics. It lays a foundation for the processing of mine microseismic data by using chaos theory, such as the precise picking of initial arriving time, the analysis and extraction of signal features, the waveforms denoising and so on.

参考文献/References:

[1]J.Y. Guigne, A.J. Stacey, C. Clements, et al. Acoustic zoom high-resolution seismic beamforming for imaging specular and non-specular energy of deep oil and gas bearing geological formations[J]. Journal of Natural Gas Science and Engineering, 2014(21): 568-591.

[2]沈鸿雁. SVD地震波场分离与去噪技术在鄂尔多斯盆地地震资料处理中的应用[J].地球物理学进展,2012,27(5):2051-2058.
SHEN Hongyan. Seismic data processing for Ordos basin with wave fields separation and denoising via SVD[J]. Progress in Geophys, 2012, 27(5): 2051-2058.
[3]沈鸿雁. 频域奇异值分解(SVD)地震波场去噪[J]. 石油地球物理勘探,2010,45(2):185-189.
SHEN Hongyan, LI Qingchun. Seismic wave field separation and denoising in linear domain via singular value decomposition (SVD)[J]. Journal of China Society, 2012, 37(4): 185-189.
[4]解文荣,张莉. 地震波形的分形判别与特征提取[J]. 华北地震科学,2004,22(4):22-24.
XIE Wenrong, ZHANG Li. The fractal identification of seismic wave and the extraction for its characteristics[J]. North China Earthquake Sciences, 2004, 22(4): 22-24.
[5]朱权洁,姜福兴,尹永明,等. 基于小波分形特征与模式识别的矿山微震波形识别研究[J]. 岩土工程学报,2012,38(3):2036-2042.
ZHU Quanjie, JIANG Fuxing, YIN Yongming, et al. Classification of mine microseismic events based on wavelet-fractal method and pattern recognition[J]. Chinese Journal of Geotechnical Engineering, 2012, 38(3): 2036-2042.[6]于正兴,何学秋,朱权洁,等. 基于小波包分形的矿山微震波形特征分析[J]. 中国安全生产科学技术,2014,10(6):27-32.
YU Zhengxing, HE Xueqiu, ZHU Quanjie, et al. The wavelet fractal characteristic of microseismic wave in mining[J]. Journal of Safety Science and Technology, 2014, 10(6): 27-32.
[7]施式亮,宋译,何利文,等. 矿井掘进工作面瓦斯涌出混沌特性判别研究[J]. 煤炭学报,2006,31(6):701-705.
SHI Shiliang, SONG Yi, HE Liwen. Research on determination of chaotic characteristics of gas gush based on time series in excavation working face of coal mine[J]. Journal of China Coal Society, 2006, 31(6): 701-705.
[8]何俊,王云刚,陈新生,等. 煤与瓦斯突出前瓦斯涌出动态混沌特性[J]. 辽宁工程技术大学学报(自然科学版),2010,29(4):529-532.
HE Jun, WANG Yungang, CHEN Xinsheng, et al. Chaotic characteristics of gas dynamic emission prior to coal and gas outburst[J]. Journal of Liaoning Technology University (Natural Science), 2010, 29(4): 529-532.
[9]王凯,王轶波,卢杰. 煤与瓦斯突出动态前兆的非线性特征研究[J]. 采矿与安全工程学报,2007,24(1):22-26.
WANG Kai, WANG Yibo, LU Jie. Study on nonlinear characteristics of dynamic precursor of coal and gas outburst[J]. Journal of Mining & Safety Engineering, 2007, 24(1): 22-26.
[10]程健,白静宜,钱建生,等. 基于混沌时间序列的煤矿瓦斯浓度短期预测[J]. 中国矿业大学学报,2008,37(2):231-235.
CHENG Jian, BAI Jingyi, QIAN Jiansheng, et al. Short-term forecasting method of coalmine gas concentration based on Chastic time series[J]. Journal of China university of Mining & Technology, 2008, 37(2): 231-235.

相似文献/References:

[1]商 鹏,雷文杰,冷军发.基于HHT的煤岩破裂微震信号分析[J].中国安全生产科学技术,2014,10(2):33.[doi:10.11731/j.issn.1673-193x.2014.02.006]
 SHANG Peng,LEI Wen jie,LENG Jun fa.Analysis on microseismic signals of coal and rock fracture based on HHT[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2014,10(2):33.[doi:10.11731/j.issn.1673-193x.2014.02.006]
[2]何正祥,彭平安,廖智勤.基于梅尔倒谱系数的矿山复杂微震信号自动识别分类方法[J].中国安全生产科学技术,2018,14(12):41.[doi:10.11731/j.issn.1673-193x.2018.12.006]
 HE Zhengxiang,PENG Pingan,LIAO Zhiqin.An automatic identification and classification method of complex microseismic signals in mines based on Mel-frequency cepstral coefficients[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2018,14(2):41.[doi:10.11731/j.issn.1673-193x.2018.12.006]
[3]刘盛辉,王娟,李常茂,等.片岩隧道变形规律分析与预测方法研究*[J].中国安全生产科学技术,2022,18(2):184.[doi:10.11731/j.issn.1673-193x.2022.02.028]
 LIU Shenghui,WANG Juan,LI Changmao,et al.Study on deformation law analysis and prediction method of schist tunnel[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2022,18(2):184.[doi:10.11731/j.issn.1673-193x.2022.02.028]
[4]熊璐伟,钟晓阳,李庶林,等.基于改进的HHT-SVM微震信号特征提取及分类识别研究*[J].中国安全生产科学技术,2023,19(10):13.[doi:10.11731/j.issn.1673-193x.2023.10.002]
 XIONG Luwei,ZHONG Xiaoyang,LI Shulin,et al.Research on feature extraction and classification and identification of microseismic signals based on improved HHT-SVM[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2023,19(2):13.[doi:10.11731/j.issn.1673-193x.2023.10.002]
[5]吕垒,张教福,朱权洁,等.矿山微震时间序列的相空间构建与混沌吸引子维数确立[J].中国安全生产科学技术,2016,12(2):27.[doi:10.11731/j.issn.1673-193X.2016.02.005]
 LYU Lei,ZHANG Jiaofu,ZHU Quanjie,et al.Construction of phase space and determination of chaotic attractor dimension for time series of mine microseismic[J].JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY,2016,12(2):27.[doi:10.11731/j.issn.1673-193X.2016.02.005]

备注/Memo

备注/Memo:
收稿日期: 2015-09-25
数字出版日期: 2015-12-28
作者简介: 吕垒,工程师,硕士研究生。
通讯作者: 朱权洁,博士,高级工程师。
基金项目: 中国博士后科学基金面上项目(2014M560892)
更新日期/Last Update: 2016-03-02